Bem-Vindos

#Seja Bem Vindo ao Nosso Site de Educação aqui você encontra Biologia,Física,Matemática,Bioquímica,Ciências,Química,e Administração e Gestão,Biologia,Contabilidade e Finanças,Culinária,Cotidiano e Bem-estar,Direito,Educação e Pedagogia,Educação Física e Esporte,ENEM e Reforço Escolar,Enfermagem,Engenharia e Construção,Estética e Beleza,Farmácia,Fisioterapia,Fonoaudiologia,Indústria,Informática,Iniciação Profissional,Liderança e Empreendedorismo,Marketing e Vendas,Medicina,Medicina Alternativa,Microsoft Oficial,Moda e Design,Nutrição,Odontologia,Psicologia ,Recursos Humanos,Telemarketing e por fim o Turismo e Hotelaria,Veterinária também ajuda para a sua faculdade,seus temas escolares .............................. # #

terça-feira, 9 de julho de 2013

A função polinomial
Um polinômio (função polinomial) com coeficientes reais na variável x é uma função matemática f:RR definida por:
p(x) = ao + a1x + a2x² + a3x³ +...+ anxn
onde ao, a1, a2, ..., an são números reais, denominados coeficientes do polinômio. O coeficiente ao é o termo constante.
Se os coeficientes são números inteiros, o polinômio é denominado polinômio inteiro em x.
Uma das funções polinomiais mais importantes é f:RR definida por:
f(x) = a x² + b x + c
O gráfico desta função é a curva plana denominada parábola, que tem algumas características utilizadas em estudos de Cinemática, radares, antenas parabólicas e faróis de carros. Ver o link A função quadrática nesta mesma página para entender a importância da função polinomial quadrática.
O valor numérico de um polinômio p=p(x) em x=a é obtido pela substituição de x pelo número a, para obter p(a).
Exemplo: O valor numérico de p(x)=2x²+7x-12 para x=3 é dado por:
p(3) = 2×(3)²+7×3-12 = 2×9+21-12 = 18+9 = 27

Grau de um polinômio
Em um polinômio, o termo de mais alto grau que possui um coeficiente não nulo é chamado termo dominante e o coeficiente deste termo é o coeficiente do termo dominante. O grau de um polinômio p=p(x) não nulo, é o expoente de seu termo dominante, que aqui será denotado por gr(p).
Acerca do grau de um polinômio, existem várias observações importantes:
  1. Um polinômio nulo não tem grau uma vez que não possui termo dominante. Em estudos mais avançados, define-se o grau de um polinômio nulo mas não o faremos aqui.
  2. Se o coeficiente do termo dominante de um polinômio for igual a 1, o polinômio será chamado mônico.
  3. Um polinômio pode ser ordenado segundo as suas potências em ordem crescente ou decrescente.
  4. Quando existir um ou mais coeficientes nulos, o polinômio será dito incompleto.
  5. Se o grau de um polinômio incompleto for n, o número de termos deste polinômio será menor do que n+1.
  6. Um polinômio será completo quando possuir todas as potências consecutivas desde o grau mais alto até o termo constante.
  7. Se o grau de um polinômio completo for n, o número de termos deste polinômio será exatamente n+1.
É comum usar apenas uma letra p para representar a função polinomial p=p(x) e P[x] o conjunto de todos os polinômios reais em x.

Igualdade de polinômios
Os polinomios p e q em P[x], definidos por:
p(x) = ao + a1x + a2x² + a3x³ +...+ anxn
q(x) = bo + b1x + b2x² + b3x³ +...+ bnxn
são iguais se, e somente se, para todo k=0,1,2,3,...,n:
ak=bk
Teorema: Uma condição necessária e suficiente para que um polinômio inteiro seja identicamente nulo é que todos os seus coeficientes sejam nulos.
Assim, um polinômio:
p(x) = ao + a1x + a2x² + a3x³ +...+ anxn
será nulo se, e somente se, para todo k=0,1,2,3,...,n:
ak= 0
O polinômio nulo é denotado por po=0 em P[x].
O polinômio unidade (identidade para o produto) p1=1 em P[x], é o polinômio:
p(x) = ao + a1x + a2x² + a3x³ + ...+ anxn
tal que ao=1 e ak=0, para todo k=1,2,3,...,n.

Soma de polinômios
Consideremos p e q polinômios em P[x], definidos por:
p(x) = ao + a1x + a2x² + a3x³ +... + anxn
q(x) = bo + b1x + b2x² + b3x³ +... + bnxn
Definimos a soma de p e q, por:
(p+q)(x) = (ao+bo)+(a1+b1)x+(a2+b2)x²+...+(an+bn)xn
A estrutura matemática (P[x],+) formada pelo conjunto de todos os polinômios com a soma definida acima, possui algumas propriedades:
Associativa: Quaisquer que sejam p, q, r em P[x], tem-se que:
(p + q) + r = p + (q + r)
Comutativa: Quaisquer que sejam p, q em P[x], tem-se que:
p + q = q + p
Elemento neutro: Existe um polinômio po(x)=0 tal que
po + p = p
qualquer que seja p em P[x].
Elemento oposto: Para cada p em P[x], existe outro polinômio q=-p em P[x] tal que
p + q = 0
Com estas propriedades, a estrutura (P[x],+) é denominada um grupo comutativo.

Produto de polinômios
Sejam p, q em P[x], dados por:
p(x) = ao + a1x + a2x² + a3x³ +...+ anxn
q(x) = bo + b1x + b2x² + b3x³ +...+ bnxn
Definimos o produto de p e q, como um outro polinômio r em P[x]:
r(x) = p(x)·q(x) = co + c1x + c2x² + c3x³ +...+ cnxn
tal que:
ck = aobk + a1bk-1 + a2 bk-2 + a3bk-3 +...+ ak-1 b1 + akbo
para cada ck (k=1,2,3,...,m+n). Observamos que para cada termo da soma que gera ck, a soma do índice de a com o índice de b sempre fornece o mesmo resultado k.
A estrutura matemática (P[x],·) formada pelo conjunto de todos os polinômios com o produto definido acima, possui várias propriedades:
Associativa: Quaisquer que sejam p, q, r em P[x], tem-se que:
(p · q) · r = p · (q · r)
Comutativa: Quaisquer que sejam p, q em P[x], tem-se que:
p · q = q · p
Elemento nulo: Existe um polinômio po(x)=0 tal que
po · p = po
qualquer que seja p em P[x].
Elemento Identidade: Existe um polinômio p1(x)=1 tal que
p1 · p = p
qualquer que seja p em P[x]. A unidade polinomial é simplesmente denotada por p1=1.
Existe uma propriedade mista ligando a soma e o produto de polinômios
Distributiva: Quaisquer que sejam p, q, r em P[x], tem-se que:
p · (q + r) = p · q + p · r
Com as propriedades relacionadas com a soma e o produto, a estrutura matemática (P[x],+,·) é denominada anel comutativo com identidade.

Espaço vetorial dos polinômios reais
Embora uma sequência não seja um conjunto mas sim uma função cujo domínio é o conjunto dos números naturais, usaremos neste momento uma notação para sequência no formato de um conjunto.
O conjunto P[x] de todos os polinômios pode ser identificado com o conjunto S das sequências quase-nulas de números reais , isto é, as sequências da forma:
p = (ao,a1,a2,a3,a4,...,an,0,0,0,...)
Isto significa que após um certo número natural n, todos os termos da sequência são nulos.
A identificação ocorre quando tomamos os coeficientes do polinômio
p(x) = ao + a1x + a2x² + a3x³ +...+ anxn
e colocamos os mesmos entre parênteses e após o n-ésimo coeficiente colocamos uma quantidade infinita de zeros, assim nós temos somente uma quantidade finita de números não nulos, razão pela qual tais sequências são denominadas sequências quase-nulas.
Esta forma de notação
p = (ao,a1,a2,a3,a4,...,an,0,0,0,...)
funciona bem quando trabalhamos com espaços vetoriais, que são estruturas matemáticas onde a soma dos elementos e a multiplicação dos elementos por escalar têm várias propriedades.
Vamos considerar S o conjunto das sequências quase-nulas de números reais com as operações de soma, multiplicação por escalar e de multiplicação, dadas abaixo.
Sejam p e q em S, tal que:
p = (ao,a1,a2,a3,a4,...,am,0,0,0,...)
q = (bo,b1,b2,b3,b4,...,bn,0,0,0,...)
e vamos supor que m < n.
Definimos a soma de p e q, como:
p+q = (ao+bo,a1+b1,a2+b2,...,an+bn,0,0,0,...)
a multiplicação de p em S por um escalar k, como:
k.p = (kao,ka1,ka2,ka3,ka4,...,kam,0,0,...)
e o produto de p e q em S como:
p·q = (co,c1,c2,c3,c4,...,cn,0,0,0,...)
sendo que
ck = aobk + a1bk-1 + a2bk-2 + a3bk-3 +...+ ak-1b1+akbo
para cada ck (k=1,2,3,...,m+n).
O conjunto S com as operações definidas é: associativo, comutativo, distributivo e possui elementos: neutro, identidade, unidade, oposto.

Características do grau de um polinômio
Se gr(p)=m e gr(q)=n então
gr(p.q) = gr(p) + gr(q)
gr(p+q)<max{gr(p),gr(q)}

Algoritmo da divisão de polinômios
Dados os polinômios p e q em P[x], dizemos que q divide p se existe um polinômio g em P[x] tal que
p(x) = g(x) q(x)
Se p em P[x] é um polinômio com gr(p)=n e g é um outro polinômio com gr(g)=m<n, então existe um polinômio q em P[x] e um polinômio r em P[x] com gr(r)<gr(g), tal que:
p(x) = q(x) g(x) + r(x)
Um caso particular importante é quando tomamos g(x)=x-c e
p(x) = ao + a1x + a2x² + a3x³ +...+ anxn
Como para todo k=1,2,3,...,n vale a identidade:
xk-ck = (x-c)( xk-1 + cxk-2 + c²xk-3 +...+ ck-2x+ck-1 )
então para
p(x) = ao + a1x + a2x² + a3x³ +...+ anxn
temos que
p(c) = ao + a1c + a2c² + a3c³ +...+ ancn
e tomando a diferença entre p(x) e p(c), teremos:
p(x)-p(c) = a1(x-c) + a2(x²-c²) + a3(x³-c³) +...+ an(xn-cn)
o que garante que podemos evidenciar g(x)=x-c para obter
p(x)- p(c)=(x-c) q(x)
onde q=q(x) é um polinômio de grau n-1. Assim, podemos escrever:
p(x)=(x-c) q(x)+p(c)
e é claro que r(x)=p(c) é um polinômio de grau 0.

Zeros de um polinômio
Um zero de um polinômio real p em P[x] é um número c, que pode ser real ou complexo, tal que p(c)=0. O zero de um polinômio também é denominadoraiz do polinômio.
Uma consequência do Algoritmo da Divisão de polinômios é que:
x-c é um fator de p se, e somente se, r(x)=f(c)=0
o que é equivalente a:
c é um zero de p, sse, x-c é um divisor de p=p(x)

Equações Algébricas e Transcendentes
Uma equação algébrica real na variável x é uma relação matemática que envolve apenas um número finito de operações de soma, subtração, produto, divisão e radiciação de termos envolvendo a variável x.
Exemplos
  1. 2x²+3x+7=0
  2. 3x²+7x½=2x+3
A função exponencial exp(x)=ex pode ser escrita como um somatório com infinitos termos contendo potências de x:
ex = 1 + x +x²/2! + x³/3! + x4/4! + x5/5! +...
assim, a equação
x²+7x=ex
não é uma equação algébrica, o que equivale a dizer que esta equação é transcendente.
Quando a equação é da forma:
p(x) = 0
onde p é um polinômio real em P[x], ela será chamada equação polinomial.
Quando uma equação possui a variável sob um sinal de radiciação ela é chamada equação irracional.
Exemplo: 2x²+3x+7 =0 e 3x²+7x½=2x+3 são equações algébricas. A primeira é polinomial, mas a segunda não é polinomial. Esta segunda é uma equação irracional.
Observação: Uma equação algébrica irracional sempre poderá ser colocada na forma de uma equação polinomial. Quando uma equação algébrica irracional é transformada em uma equação polinomial, as raízes da nova equação poderão não coincidir com as raízes da equação original e as raízes obtidas desta nova equação que não servem para a equação original são denominadas raízes estranhas.
Exercício: Apresentar uma equação irracional que tenha raízes estranhas.

Métodos de resolução algébrica
Alguns tipos especiais de equações podem ser resolvidos.
Equação do 1o. grau: A equação ax+b=0 com a diferente de zero, admite uma única raíz dada por:
x = -b/a
Equação do 2o. grau: A equação ax²+bx+c=0 com a diferente de zero, admite exatamente duas raízes no conjunto dos números complexos, dadas por:
x1=(-b+R[b²-4ac] / 2a
x2=(-b- R[b²-4ac]/ 2a
onde R[z] é a raiz quadrada de z.
Nesta página há dois links que tratam sobre o assunto: Equações do Segundo grau que dá um tratamento mais detalhado sobre o assunto e Cálculo de raízes de uma Equação do 2o.grau que é um formulário onde você entra com os coeficientes e obtém as raízes sem muito esforço.
Equação cúbica: A equação ax³+bx²+cx+d=0 com a não nulo, admite exatamente três raízes no conjunto dos números complexos que podem ser obtidas pela fórmula de Tartaglia (Cardano).
Veja o nosso link O método de Tartaglia (Eq. do 3o.grau) onde você poderá encontrar material mais aprofundado sobre o assunto.
Para obter apenas o cálculo das três raízes de uma equação do 3o. grau, vá ao nosso link Raízes de uma Equação do 3o. grau.
Equação quártica: A equação ax4+bx³+cx²+dx+e=0 com a não nulo, admite exatamente quatro raízes no conjunto dos números complexos que podem ser obtidas pela fórmula de Ferrari.
Equação quíntica: Para equações de grau maior ou igual a 5, não existem métodos algébricos para obter todas as raízes, mas existem muitos métodos numéricos que proporcionam as raízes de tais equações com grande precisão.
Existe uma versão da planilha Kyplot disponível gratuitamente na Internet, que dispõe de um mecanismo capaz de calcular com grande precisão raízes de equações polinomiais de grau n.
Em Português, há um excelente livro que trata sobre Equações Algébricas e a história da Matemática subjacente: "O Romance das Equações Algébricas, Gilberto G. Garbi, Makron Books, São Paulo, 1999."

Teorema Fundamental da Álgebra
Teorema (Gauss): Toda equação algébrica polinomial com coeficientes reais ou complexos, admite no conjunto dos números complexos, pelo menos uma raiz.
Teorema equivalente: Toda equação algébrica polinomial de grau n, com coeficientes reais ou complexos, admite exatamente n raízes, no conjunto dos números complexos.
Consequência: Toda equação algébrica polinomial real de grau n, admite no máximo n raízes, no conjunto dos números reais.

Algumas identidades polinomiais
Ver o link Produtos Notáveis nesta mesma página onde existem 33 identidades polinomiais, sendo algumas não triviais.

Algumas desigualdades polinomiais
Algumas desigualdades bastante comuns que podem ser obtidas a partir das identidades polinomiais:
  1. a²+b² > 2ab
  2. (a+b)/2 > R[a.b]
  3. a²+b²+c² > ab+ac+bc
onde R[x] é a raiz quadrada de x e o símbolo > significa maior ou igual.
Introdução aos números complexos
Na resolução de uma equação algébrica, um fator fundamental é o conjunto universo que representa o contexto onde poderemos encontrar as soluções. Por exemplo, se estivermos trabalhando no conjunto dos números racionais, a equação 2x+7=0, terá uma única solução dada por x=-7/2. assim, o conjunto solução será:
S = { 7/2 }
mas, se estivermos procurando por um número inteiro como resposta, o conjunto solução será o conjunto vazio, isto é:
S = Ø = { }
De forma análoga, ao tentar obter o conjunto solução para a equação x2+1=0 sobre o conjunto dos números reais, obteremos como resposta o conjunto vazio, isto é:
S = Ø = { }
o que significa que não existe um número real que elevado ao quadrado seja igual a -1, mas se seguirmos o desenvolvimento da equação pelos métodos comuns, obteremos:
x = R[-1] = 
onde R[-1] é a raiz quadrada do número real -1. Isto parece não ter significado prático e foi por esta razão que este número foi chamado imaginário, mas o simples fato de substituir R[-1] pela letra i (unidade imaginária) e realizar operações como se estes números fossem polinômios, faz com que uma série de situações tanto na Matemática como na vida, tenham sentido prático de grande utilidade e isto nos leva à teoria dos números complexos.

Definição de número complexo
Número complexo é todo número que pode ser escrito na forma
z = a + b i
onde a e b são números reais e i é a unidade imaginária. O número real a é a parte real do número complexo z e o número real b é a parte imaginária do número complexo z, denotadas por:
a = Re(z)  e  b = Im(z)
Exemplos de tais números são apresentados na tabela.
Número complexoParte realParte imaginária
2 + 3 i23
2 - 3 i2-3
220
3 i03
-3 i0-3
000
Observação: O conjunto de todos os números complexos é denotado pela letra C e o conjunto dos números reais pela letra R. Como todo número real x pode ser escrito como um número complexo da forma z=x+yi, onde y=0 então assumiremos que o conjunto dos números reais está contido no conjunto dos números complexos.

Elementos complexos especiais
  1. Igualdade de números complexos: Dados os números complexos z=a+bi e w=c+di, definimos a igualdade entre z e w, escrevendo
    z = w   se, e somente se,   a = c e b = d
    Para que os números complexos z=2+yi e w=c+3i sejam iguais, deveremos ter que c=2 e y=3.
  2. Oposto de um número complexo: O oposto do número complexo z=a+bi é o número complexo denotado por -z=-(a+bi), isto é:
    -z = Oposto(a+bi) = (-a) + (-b)i
    O oposto de z=-2+3i é o número complexo -z=2-3i.
  3. Conjugado de um número complexo: O número complexo conjugado de z=a+bi é o número complexo denotado por z*=a-bi, isto é:
    z* = conjugado(a+bi) = a + (-b)i
    O conjugado de z=2-3i é o número complexo z*=2+3i.

Operações básicas com números complexos
Dados os números complexos z=a+bi e w=c+di, podemos definir duas operações fundamentais, adição e produto, agindo sobre eles da seguinte forma:
z+w = (a+bi) + (c+di) = (a+c) + (b+d)i
z.w = (a+bi).(c+di) = (ac-bd) + (ad+bc)i
Observação: Tais operações lembram as operações com expressões polinomiais, pois a adição é realizada de uma forma semelhante, isto é: (a+bx)+(c+dx)=(a+c)+(b+d)x e a multiplicação (a+bx).(c+dx), é realizada através de um algoritmo que aparece na forma:
a + b x
c + d x    X
_________________
ac + bcx
     adx + bdx²
______________________
ac + (bc+ad)x + bdx²
de forma que devemos substituir x2 por -1.
Exemplos:
  1. Se z=2+3i e w=4-6i, então z+w=(2+3i)+(4-6i)=6-3i.
  2. Se z=2+3i e w=4-6i, então z.w=(2+3i).(4-6i)=-4+0i.

Potências e curiosidade sobre a unidade imaginária
Potências de i: Ao tomar i=R[-1], temos uma sequência de valores muito simples para as potências de i:
Potênciai2i3i4i5i6i7i8i9
Valor-1-i1i-1-i1i
Pela tabela acima podemos observar que as potência de i cujos expoentes são múltiplos de 4, fornecem o resultado 1, logo toda potência de i pode ter o expoente decomposto em um múltiplo de 4 mais um resto que poderá ser 0, 1, 2 ou 3. Dessa forma podemos calcular rapidamente qualquer potência de i, apenas conhecendo o resto da divisão do expoente por 4.
Exercício: Calcular os valores dos números complexos: i402, i4033 e i1998. Como exemplo: i402=i400.i2 = 1.(-1) = -1
Curiosidade geométrica sobre i: Ao pensar um número complexo z=a+bi como um vetor z=(a,b) no plano cartesiano, a multiplicação de um número complexo z=a+bi pela unidade imaginária i, resulta em um outro número complexo w=-b+ai, que forma um ângulo reto (90 graus) com o número complexo z=a+bi dado.
Exercício: Tomar um número complexo z, multiplicar por i para obter z1=i.z, depois multiplicar o resultado z1 por i para obter z2=i.z1. Continue multiplicando os resultados obtidos por i até ficar cansado ou então use a inteligência para descobrir algum fato geométrico significativo neste contexto. Após constatar que você é inteligente, faça um desenho no plano cartesiano contendo os resultados das multiplicações.

O inverso de um número complexo
Dado o número complexo z=a+bi, não nulo (a ou b deve ser diferente de zero) definimos o inverso de z como o número z-1=u+iv, tal que
z . z-1 = 1
O produto de z pelo seu inverso z-1 deve ser igual a 1, isto é:
(a+bi).(u+iv) = (au-bv)+(av+bu)i = 1 = 1+0.i
o que nos leva a um sistema com duas equações e duas incógnitas:
a u - b v = 1
b u + a v = 0
Este sistema pode ser resolvido pela regra de Cramér e possui uma única solução (pois a ou b são diferentes de zero), fornecendo:
u = a/(a2+b2)
v = -b/(a2+b2)
assim, o inverso do número complexo z=a+bi é:
Obtenção do inverso de um número complexo: Para obter o inverso de um número complexo, por exemplo, o inverso de z=5+12i, deve-se:
  1. Escrever o inverso desejado na forma de uma fração
  2. Multiplicar o numerador e o denominador da fração pelo conjugado de z
  3. Lembrar que i2 = -1, simplificar os números complexos pela redução dos termos semelhantes, para obter

Diferença e divisão de números complexos
Diferença de números complexos: A diferença entre os números complexos z=a+bi e w=c+di é o número complexo obtido pela soma entre z e -w, isto é: z-w=z+(-w).
Exemplo: A diferença entre os complexos z=2+3i e w=5+12i é z-w=(2+3i)+(-5-12i)=(2-5)+(3-12)i=-3-9i.
Divisão de números complexos: A divisão entre os números complexos z=a+bi e w=c+di (w não nulo) é definida como o número complexo obtido pelo produto entre z e w-1, isto é: z/w=z.w-1.
Exemplo: Para dividir o número complexo z=2+3i por w=5+12i, basta multiplicar o numerador e o denominador da fração z/w pelo conjugado de w:

Representação geométrica de um número complexo
Um número complexo da forma z=a+bi, pode ser representado do ponto de vista geométrico no plano cartesiano, como um ponto (par ordenado) tomando-se a abscissa deste ponto como a parte real do número complexo a no eixo OX e a ordenada como a parte imaginária do número complexo z no eixo OY, sendo que o número complexo 0=0+0i é representado pela própria origem (0,0) do sistema.

Módulo e argumento de um número complexo
Módulo de um número complexo: No gráfico anterior observamos que existe um triângulo retângulo cuja medida da hipotenusa é a distância da origem 0 ao número complexo z, normalmente denotada pela letra grega ro nos livros, mas aqui denotada por r, o cateto horizontal tem comprimento igual à parte real a do número complexo e o cateto vertical corresponde à parte imaginária b do número complexo z.
Desse modo, se z=a+bi é um número complexo, então r2=a2+b2 e a medida da hipotenusa será por definição, o módulo do número complexo z, denotado por |z|, isto é:
Argumento de um número complexo: O ângulo ø formado entre o segmento OZ e o eixo OX, é denominado o argumento do número complexo z. Pelas definições da trigonometria circular temos as três relações:
cos(ø)=a/r,  sen(ø)/r,  tan(ø)=b/a
Por experiência, observamos que é melhor usar o cosseno ou o seno do ângulo para definir bem o argumento, uma vez que a tangente apresenta alguns problemas.

Forma polar e sua multiplicação
Forma polar de um número complexo: Das duas primeiras relações trigonométricas apresentadas anteriormente, podemos escrever:
z = a+bi = r cos(ø) + r i sen(ø) = r (cos ø + i sen ø)
e esta última é a forma polar do número complexo z.
Multiplicação de complexos na forma polar: Consideremos os números complexos:
z = r (cos m + i sen m)
w = s (cos n + i sen n)
onde, respectivamente, r e s são os módulos e m e n são os argumentos destes números complexos z e w.
Realizamos o produto entre estes números da forma usual e reescrevemos o produto na forma:
z . w = r s [cos (m+n) + i sen (m+n)]
Este fato é garantido pelas relações:
cos(m+n) = cos(m) cos(n) - sen(m) sen(n)
sen(m+n) = sen(m) cos(n) + sen(n) cos(m)

Potência de um número complexo na forma polar
Seguindo o produto acima, poderemos obter a potência de ordem k de um número complexo. Como
z = r [cos(m) + i sen(m)]
então
zk = rk [cos(km) + i sen(km)]
Exemplo: Consideremos o número complexo z=1+i, cujo módulo é a raiz quadrada de 2 e o argumento é /4 (45 graus). Para elevar este número à potência 16, basta escrever:
z16 = 28[cos(720o)+isen(720o)]=256

Raiz quarta de um número complexo
Um ponto fundamental que valoriza a existência dos números complexos é a possibilidade de extrair a raiz de ordem 4 de um número complexo, mesmo que ele seja um número real negativo, o que significa, resolver uma equação algébrica do 4o. grau. Por exemplo, para extrair a raiz quarta do número -16, devemos obter as quatro raízes da equação algébrica x4+16=0.
Antes de apresentar o nosso processo para a obtenção da raiz quarta de um número complexo w, necessitamos saber o seu módulo r e o seu argumento t, o que significa poder escrever o número complexo na forma polar:
w = r (cos t + i sen t)
O primeiro passo é realizar um desenho mostrando este número complexo w em um círculo de raio r e observar o argumento t, dado pelo angulo entre o eixo OX e o número complexo w.
O passo seguinte é obter um outro número complexo z(1) cujo módulo seja a raiz quarta de r e cujo argumento seja t/4. Este número complexo é a primeira das quatro raizes complexas procuradas.
z(1) = r1/4 [cos(t/4)+isen(t/4)]
As outras raízes serão:
z(2) = i z(1)
z(3) = i z(2)
z(4) = i z(3)
Todas aparecem no gráfico, mas observamos que este processo para obter as quatro raízes do número complexo w ficou mais fácil pois temos a propriedade geométrica que o número complexo i multiplicado por outro número complexo, roda este último de 90 graus e outro fato interessante é que todas as quatro raízes de w estão localizadas sobre a mesma circunferência e os ângulos formados entre duas raízes consecutivas é de 90 graus.
Se os quatro números complexos forem ligados, aparecerá um quadrado rodado de t/4 radianos em relação ao eixo OX.

Raiz n-ésima de um número complexo
Existe uma importantíssima relação atribuída a Euler:
ei.t = cos(t) + i sen(t)
que é verdadeira para todo argumento real e a constante e tem o valor aproximado 2,71828... Para facilitar a escrita usamos frequentemente:
exp(i t) = cos(t) + i sen(t)
Observação: A partir da relação de Euler, é possível construir uma relação notável envolvendo os mais importantes sinais e constantes da Matemática:
Voltemos agora à exp(it). Se multiplicarmos o número eit por um número complexo z, o resultado será um outro número complexo rodado de t radianos em relação ao número complexo z.
Por exemplo, se multiplicarmos o número complexo z por exp(i/8)=cos(/8)+i sen(/8), obteremos um número complexo z(1) que forma com z um ângulo /8=22,5graus, no sentido anti-horário.
Iremos agora resolver a equação xn=w, onde n é um número natural e w é um número complexo dado. Da mesma forma que antes, podemos escrever o número complexo w=r(cos t + i sen t) e usar a relação de Euler, para obter:
w = r eit
Para extrair a raiz n-ésima, deve-se construir a primeira raiz que é dada pelo número complexo
z(1) = r1/n eit/n
Todas as outras n-1 raízes serão obtidas pela multiplicação recursiva dada por:
z(k) = z(k-1) e2i/n
onde k varia de 2 até n.
Exemplo: Para obter a primeira raiz da equação x8=-64, observamos a posição do número complexo w=-64+0i, constatando que o seu módulo é igual a 64 e o argumento é igual a radianos (=180 graus).
Aqui, a raiz oitava de 64 é igual a 2 e o argumento da primeira raiz é /8, então z(1) pode ser escrita na forma polar:
z(1) = 2 ei/8 = 2(cos 22,5o+i sen 22,5o) = R[2](1+i)
onde R[2] é a raiz quadrada de 2. Obtemos as outras raízes pela multiplicação do número complexo abaixo, através de qualquer uma das formas:
e2i/8 = 2(cos 45o + i sen 45o) = R[2](1+i)/2=0,707(1+i)
Assim:
z(2) = z(1) R[2](1+i)/2
z(3) = z(2) R[2](1+i)/2
z(4) = z(3) R[2](1+i)/2
z(5) = z(4) R[2](1+i)/2
z(6) = z(5) R[2](1+i)/2
z(7) = z(6) R[2](1+i)/2
z(8) = z(7) R[2](1+i)/2
Exercício: Construa no sistema cartesiano os 8 números complexos e ligue todas as raízes consecutivas para obter um octógono regular rodado de 22,5 graus em relação ao eixo OX. Tente comparar este método com outros que você conhece e realize exercícios para observar como aconteceu o aprendizado.

Número complexo como matriz
Existe um estudo sobre números complexos, no qual um número complexo z=a+bi pode ser tratado como uma matriz quadrada 2x2 da forma:
Matriz

Nenhum comentário:

Postar um comentário