y = x
Vejamos o que acontece com essa reta quando varia o coeficiente do termo em x.
| y = x + 1 (____) | y = x (____) | ||||
| x | y | x | y | x | y |
| -6 | -12 | --6 | -6 | -6 | -3 |
| -5 | -10 | -5 | -6 | -5 | -5/2 |
| -4 | -8 | -4 | -4 | -4 | -2 |
| -3 | -6 | -3 | -3 | -3 | -3/2 |
| -2 | -4 | -2 | -3 | -2 | -1 |
| -1 | -2 | -1 | -1 | -1 | -1/2 |
| 0 | 0 | 0 | 0 | -0 | -1 |
| 1 | 2 | 1 | 1 | 1 | -1/2 |
| 2 | 4 | 2 | 2 | 2 | -1 |
| 3 | 6 | 3 | 3 | 3 | 3/2 |
| 4 | 8 | 4 | 4 | 4 | 2 |
| 5 | 10 | 5 | 5 | 5 | 5/2 |
| 6 | 12 | 6 | 6 | 6 | 3 |
E os gráficos correspondentes a cada curva:
![]() |
A equação y = x representa a bissetriz dos quadrantes ímpares (b13), pois seus pontos têm coordenadas iguais.
Na equação y = 2x, a multiplicação do termo em x por um coeficiente maior do que 1 fez a reta "girar" no sentido horário; e, na equação
, a multiplicação do termo em x por um número positivo menor do que 1, fez com que ela "girasse" no sentido anti-horário. Em qualquer caso, a reta sofre uma inclinação. Por isso, o coeficiente de x na equação reduzida de uma reta se chama coeficiente angular, pois altera seu ângulo de inclinação (considerado, no sentido anti-horário, a partir do eixo horizontal [Ox]).
E o que acontecerá com a inclinação de uma reta se seu coeficiente angular for negativo?
Para saber, trace num mesmo plano cartesiano as retas representadas pelas duas equações a seguir:
| y = x | y = -x | ||
| x | y | x | y |
| -5 | -5 | -5 | 5 |
| -4 | -4 | -4 | 4 |
| -3 | -3 | -3 | 3 |
| -2 | -2 | -2 | 2 |
| -1 | -1 | -1 | 1 |
| 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | -1 |
| 2 | 2 | 2 | -2 |
| 3 | 3 | 3 | -3 |
| 4 | 4 | 4 | -4 |
| 5 | 5 | 5 | -5 |
A reta de equação y = x é a bissetriz dos quadrantes ímpares (b13), e a reta de equação y = - x é a bissetriz dos quadrantes pares (b24). A primeira é crescente; e a segunda, decrescente.
E isso acontece com todas as retas que não são verticais ou horizontais: se seu coeficiente angular é positivo, elas são crescentes; se é negativo, são decrescentes.

Nenhum comentário:
Postar um comentário