Bem-Vindos

#Seja Bem Vindo ao Nosso Site de Educação aqui você encontra Biologia,Física,Matemática,Bioquímica,Ciências,Química,e Administração e Gestão,Biologia,Contabilidade e Finanças,Culinária,Cotidiano e Bem-estar,Direito,Educação e Pedagogia,Educação Física e Esporte,ENEM e Reforço Escolar,Enfermagem,Engenharia e Construção,Estética e Beleza,Farmácia,Fisioterapia,Fonoaudiologia,Indústria,Informática,Iniciação Profissional,Liderança e Empreendedorismo,Marketing e Vendas,Medicina,Medicina Alternativa,Microsoft Oficial,Moda e Design,Nutrição,Odontologia,Psicologia ,Recursos Humanos,Telemarketing e por fim o Turismo e Hotelaria,Veterinária também ajuda para a sua faculdade,seus temas escolares .............................. # #

sábado, 21 de junho de 2014

Retas: Concorrência

   Dadas as retas r: a1x +b1y + c1 = 0 e s: a2x + b2y + c2 = 0, elas serão concorrentes se tiverem coeficientes angulares diferentes:
        Como exemplo, vamos ver se as retas r: 3x - 2y + 1 = 0  e  s: 6x + 4y + 3 = 0 são concorrentes:  
Perpendicularismo
        Se r  e s são duas retas não-verticais, então r é perpendicular a s se, e somente se, o produto de seus coeficientes angulares for igual a -1. Lê-se . Acompanhe o desenho:
Ângulo entre duas retas
   Sendo r e s duas retas não-verticais e não-perpendiculares entre si, pelo teorema do ângulo externo , temos:
    Dependendo da posição das duas retas no plano, o ângulo  pode ser agudo ou obtuso. Logo:
    Essa relação nos fornece o ângulo agudo  entre r e s, pois . O ângulo obtuso  será o suplemento de .

Distância entre ponto e reta
   Dados um ponto P(x1, y1) e uma reta r:ax + by + c = 0, a distância entre eles (dpr)é dada por:
Vamos calcular a distância, por exemplo, do ponto P(-1,2) à reta r: x - 2y + 1 = 0.
Temos P(-1, 2) = P(x1, y1), a = 1, b= - 2  e  c=1. Assim:
Bissetrizes
   Dadas as retas concorrentes r: a1x + b1y + c1 = 0  e  s: a2x + b2y + c2 = 0, o que se interceptam em um ponto Q, se P(x, y) é um ponto qualquer de uma das bissetrizes, PQ, então P equidista de r e s:

        Considerando o sinal positivo, obtemos uma bissetriz; considerando o sinal negativo, obtemos a outra.
       Vejamos um exemplo:
        Se r: 3x + 2y - 7 = 0  e s: 2x - 3y + 1 = 0, então suas bissetrizes são:

Nenhum comentário:

Postar um comentário