Bem-Vindos

#Seja Bem Vindo ao Nosso Site de Educação aqui você encontra Biologia,Física,Matemática,Bioquímica,Ciências,Química,e Administração e Gestão,Biologia,Contabilidade e Finanças,Culinária,Cotidiano e Bem-estar,Direito,Educação e Pedagogia,Educação Física e Esporte,ENEM e Reforço Escolar,Enfermagem,Engenharia e Construção,Estética e Beleza,Farmácia,Fisioterapia,Fonoaudiologia,Indústria,Informática,Iniciação Profissional,Liderança e Empreendedorismo,Marketing e Vendas,Medicina,Medicina Alternativa,Microsoft Oficial,Moda e Design,Nutrição,Odontologia,Psicologia ,Recursos Humanos,Telemarketing e por fim o Turismo e Hotelaria,Veterinária também ajuda para a sua faculdade,seus temas escolares .............................. # #

sábado, 21 de junho de 2014

FUNÇÕES ALGÉBRICAS (a>0)


1.   
2.  
3.  
4.  

   INTEGRAÇÃO POR PARTES
Dedução da Fórmula para a Integração por Partes
Se f e são funções diferenciáveis, então, pela regra de diferenciação do produto, 
Integrando ambos os lados, obtemos
ou
ou
Uma vez que a integral à direita irá produzir uma outra constante de integração, não há necessidade de manter o C nesta última equação; assim sendo, obtemos
(1)    
a qual é chamada de fórmula de integração por partes. Usando esta fórmula, às vezes podemos tornar um problema de integração mais simples.
Na prática, é usual reescrever (1) fazendo
u=f(x),          du=f '(x)dx  
,      
Isso dá lugar à seguinte forma alternativa para (1):
(2)   
  
Exemplo
 Calcule 
Solução. Para aplicar (2), precisamos escrever a integral na forma
Uma maneira de fazer isso é colocar
para que,
Deste modo,a partir de(2)

Nenhum comentário:

Postar um comentário