Bem-Vindos

#Seja Bem Vindo ao Nosso Site de Educação aqui você encontra Biologia,Física,Matemática,Bioquímica,Ciências,Química,e Administração e Gestão,Biologia,Contabilidade e Finanças,Culinária,Cotidiano e Bem-estar,Direito,Educação e Pedagogia,Educação Física e Esporte,ENEM e Reforço Escolar,Enfermagem,Engenharia e Construção,Estética e Beleza,Farmácia,Fisioterapia,Fonoaudiologia,Indústria,Informática,Iniciação Profissional,Liderança e Empreendedorismo,Marketing e Vendas,Medicina,Medicina Alternativa,Microsoft Oficial,Moda e Design,Nutrição,Odontologia,Psicologia ,Recursos Humanos,Telemarketing e por fim o Turismo e Hotelaria,Veterinária também ajuda para a sua faculdade,seus temas escolares .............................. # #

sábado, 21 de junho de 2014

Geometria Espacial: Áreas


  Desenvolvendo a superfície lateral de um cone circular reto, obtemos um setor circular de raio g e comprimento :
          Assim, temos de considerar as seguintes áreas:
a) área lateral (AL): área do setor circular
b) área da base (AB):área do circulo do raio R
c) área total (AT):soma da área lateral com a área da base
Volume
       Para determinar o volume do cone, vamos ver como calcular volumes de sólidos de revolução. Observe a figura:
d = distância do centro de gravidade (CG) da sua superfície ao eixo e
S=área da superfície
         Sabemos, pelo Teorema de Pappus - Guldin, que, quando uma superfície gira em torno de um eixo e, gera um volume tal que:
         Vamos, então, determinar o volume do cone de revolução gerado pela rotação de um triângulo retângulo em torno do cateto h:
        O CG do triângulo está a uma distância   do eixo de rotação. Logo:

Nenhum comentário:

Postar um comentário