Bem-Vindos

#Seja Bem Vindo ao Nosso Site de Educação aqui você encontra Biologia,Física,Matemática,Bioquímica,Ciências,Química,e Administração e Gestão,Biologia,Contabilidade e Finanças,Culinária,Cotidiano e Bem-estar,Direito,Educação e Pedagogia,Educação Física e Esporte,ENEM e Reforço Escolar,Enfermagem,Engenharia e Construção,Estética e Beleza,Farmácia,Fisioterapia,Fonoaudiologia,Indústria,Informática,Iniciação Profissional,Liderança e Empreendedorismo,Marketing e Vendas,Medicina,Medicina Alternativa,Microsoft Oficial,Moda e Design,Nutrição,Odontologia,Psicologia ,Recursos Humanos,Telemarketing e por fim o Turismo e Hotelaria,Veterinária também ajuda para a sua faculdade,seus temas escolares .............................. # #

sábado, 21 de junho de 2014

SÉRIES DE POTÊNCIA

SÉRIE-P
    series26.gif (497 bytes)
CONVERGE se p > 1
DIVERGE se p1
Se p = 1, a série
é chamada SÉRIE HARMÔNICA e, de acordo com o teorema, é divergente.
SÉRIE ALTERNADA
É da forma:
series28.gif (1137 bytes)
SÉRIES DE POTÊNCIA
Séries de potências de x:
series34.gif (1019 bytes)
ou
Séries de potência de (x-c):
series32.gif (1297 bytes)
Por conveniência, vamos admitir que , mesmo quando x = 0.
Ao substituir x por um número real, obtém-se uma série de termos constantes que pode convergir ou divergir.
Em qualquer série de potências de x, a série converge sempre para x=0, pois se substituirmos x por0 a série se reduz a a0.
Na série de potências de (x-c), a série converge para x = c.
Para determinar os outros valores de x para os quais a série converge, utiliza-se o teste da razão.

TESTE DE LEIBINZ
Uma série alternada CONVERGE se:
* Seu termo genérico, em módulo, tende a zero.
* A série dos módulos é decrescente.
Há três maneiras diferentes de verificar se a série dos módulos é decrescente.
a) verificar se, para todo "k" inteiro positivo, .
b) verificar se, para todo "k" inteiro positivo, .
c) considerar a função f(x) = f(n) e verificar o sinal de sua derivada. Se f'(x)<0, então f é decrescente.

Nenhum comentário:

Postar um comentário